Publications :

 

1.   Generating Operators and Normal Derivatives, (with T. Kobayashi), in Expansion in Representation Theory and Harmonic Analysis, Edt. Y. Tanaka, RIMS Kôkyûroku No. 2297, 2025.

2.   Symmetry Breaking, F-Method, and Beyond, (with T. Kubo), in Symmetry in Geometry and Analysis, Volume 1, Progress in Mathematics 357, Birkhäuser, 2025.

3.   Global Analysis of Minimal Representations, in Symmetry in Geometry and Analysis, Volume 1, Progress in Mathematics 357, Birkhäuser, 2025.

4.   A generating operator for Rankin-Cohen brackets, (with T. Kobayashi), J. Funct. Anal. 289, (2025), pp. 1-  22.

5.   A short proof for Rankin--Cohen brackets and generating operators, (with T. Kobayashi), in  Lie Theory and Its Applications in Physics, Springer Proceedings in Mathematics & Statistics, (2024).

6.   Inversion of Rankin-Cohen operators via Holographic Transform, (with T. Kobayashi) Ann. Inst. Fourier, Tome 70, no 5 (2020), p. 2131-2190.

7.   A generating function for Rankin-Cohen brackets. Letters in Math. Physics, 108 (12), (2018), pp. 2627-2633.

8.   Conformal symmetry breaking operators for anti-de Sitter spaces, (with T. Kobayashi, T. Kubo), Geometric Methods in Physics. XXXV Workshop. Trends in Mathematics, pp. 69-85, Springer, 2018.

9.   Conformally equivariant differential operators for differential forms, (with T. Kobayashi, T. Kubo), Lecture Notes in Mathematics 2170, Springer-Nature (2016), ix-200 pages.

10. Classification of differential symmetry breaking operators for differential forms (with T. Kobayashi, T. Kubo) C. R. Acad. Sci. Paris, 354, (2016), pp. 671-676.

11. Differential symmetry breaking operators. I. General theory and F-method, (with T. Kobayashi), Selecta Math. 22, (2016), pp. 801-845.

12. Differential symmetry breaking operators. II. Rankin-Cohen operators for symmetric pairs, (with T. Kobayashi), Selecta Math. (2016), pp. 847-911.

13. Vector-valued covariant differential operators for the Möbius transformation (with T. Kobayashi, T. Kubo) in Lie Theory and Its Applications in Physics, V. Dobrev, Edt. Springer Proceedings in Mathematics & Statistics, 111, 2015, pp. 67-86.

14. Rankin-Cohen operators for symmetric pairs, (with T. Kobayashi), Preprint IHES/M/13/3.

15. Rankin-Cohen brackets and representations of conformal groups. Annales Math. Blaise Pascal 19 (2012), pp. 455-484.

16. Geometric analysis on small unitary representations of GL(N,R), (with T. Kobayashi, B. Ørsted), J. Funct. Anal., 260, (2011), pp. 1682–1720.

17. Generalized Bernstein-Reznikov integrals, (with J.-L. Clerc, T. Kobayashi, B. Ørsted), Math. Annalen, 349, (2011), pp. 395-431.

18. Approaching Quantization in the light of invariant differential operators, Proceeding of the International Conference, Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter 2010, pp. 241–248.

19. Composition formulas in the Weyl calculus (with T. Kobayashi, B. Ørsted, A. Unterberger), J. Funct. Anal. 257, (2009), pp. 948-991.

20. Covariant quantization: symbolic calculus versus deformation quantization. Japan. J. Math. 3. (2008), pp. 247-290.

21. Rankin-Cohen brackets and associativity. Lett. Math. Physics, 85, (2008), pp. 195–202.

22. H*-algebras and quantization of para-Hermitian spaces, (with G. van Dijk) Proc. Amer. Math. Soc. 136, (2008), pp. 2253-2260.

23. Projective pseudo-differential analysis and harmonic analysis, (with A. Unterberger), J.Funct. Anal. 242, (2007), pp. 442--485.

24. Ring structures for holomorphic discrete series and Rankin-Cohen brackets, (with G. van Dijk), J. Lie Theory, 17, (2007), pp. 283-305.

25. Berezin kernels and analysis on Makarevich spaces (with J.Faraut), Indag. Mathem., (N.S.) 16, (2005), no. 3-4, pp. 461-–486.

26. Berezin kernels and maximal degenerate representations associated with Riemannian symmetric spaces of Hermitian type. J. Math. Sci., 126, (2005) pp. 1046-1052.

27. Isomorphisme de Duflo et la cohomologie tangentielle (with Ch.Torossian), J. Geom. Phys. 51, (2004),  pp. 487-506.

28. Invariant Hilbert subspaces of the oscillator representation (with G. van Dijk, S. Aparicio) Indag. Math. (N.S.) 14, (2003), pp. 309–318.

29. Star-representations and invariant quantization of the upper half-plane, (with P.Bieliavsky) Non commutative harmonic analysis, Progress in Mathematics, Vol.220, (2003), Birkhauser.

30. Symmetric spaces and star-representations, (with P.Bieliavsky) J. Geom. Phys., 41 (2002), pp.224-234.

31. Matrix-valued Berezin Kernels (with G. van Dijk), Geometry and analysis on Lie groups Banach Center Publications, vol. 55, Warszawa (2002), pp. 269–288.

32. Berezin kernels and maximal degenerate representations associated with Riemannian symmetric spaces of Hermitian type. J. Math. Sci., New York 126, (2002), pp. 1046-1052.

33. Berezin Kernels on Tube domains, (with G. van Dijk) J. Funct. Anal. 181, (2001), pp. 189-209.

34. Analyse conforme sur les algèbres de Jordan. J. Aust. Math. Soc. 73 (2002), pp. 279–299.

35. Représentation de Weil associée à une représentation d’algèbre de Jordan, C.R. Acad. Sci. Paris, 328, (1999), pp. 463-468.

36. Espace de Bergman d’un semi-groupe complexe, C. R. Acad. Sci. Paris, 322, (1996), pp.635-640.

 

 Reports :

 

1. Generating operators and Branching Problems, Proceedings of the 2023, Symposium on Representation Theory, Okinawa, Japan.

2. On symmetry breaking operators, Proceedings of the 2018 Symposium on Representation Theory, Edt. J. Inoue, Tottori, Japan.

3. "Liberté aux professeurs associés!" Interview with Alexandre Aleksandrovich Kirillov. Eur. Math. Soc. Newsl. No. 106 (2017), 21–29 (with A. Fialowski, Yu. Neretin and V. Salnikov).

4. T. Kobayashi, T. Kubo, and M. Pevzner, Covariant differential operators and the Rankin-Cohen bracket, Proceedings of Symposium on Representation Theory 2014, Awajishima, (J. Matsuzawa and N. Shimeno, eds.), 2014, pp. 75-86.

5. Hilbert algebras and symmetric spaces. Proceedings of 2007 Symposium on Representation theory, Edt. N. Shimeno, Okayama University, 2007, Okayama.

6. Kontsevich Quantization and Duflo Isomorphism, dans Quantization and Analysis on symmetric spaces, Proceedings of Schrödinger Institute, Editor H. Upmeier, 2005.

7. Berezin Transform and Quantization, Annual Report of Leiden University, 2001.

 

Livres:

I. Conformally equivariant differential operators for differential forms,  (avec T. Kobayashi, T.Kubo), Lecture Notes in Mathematics 2170, Springer (2016), 200 pages.

II. Représentations et quantification, EUE, 2010, ISBN: 978-6131541636.

 

Thèses:

A.   Analyse conforme sur les algèbres de Jordan. Thèse de doctorat, Université Paris VI, 1998.

B.    Représentations des groupes de Lie conformes et quantification des espaces symétriques, Habilitation à diriger des recherches (HDR), Université de Reims, 2005.