Publications :
1. Generating Operators and Normal
Derivatives, (with T. Kobayashi), in Expansion in Representation Theory and
Harmonic Analysis, Edt. Y. Tanaka, RIMS Kôkyûroku No. 2297, 2025.
2. Symmetry Breaking, F-Method, and
Beyond, (with T. Kubo), in Symmetry in Geometry and Analysis, Volume 1,
Progress in Mathematics 357, Birkhäuser, 2025.
3. Global Analysis of Minimal
Representations, in Symmetry in Geometry and Analysis, Volume 1,
Progress in Mathematics 357, Birkhäuser, 2025.
4. A generating operator for
Rankin-Cohen brackets, (with T. Kobayashi), J. Funct.
Anal. 289, (2025), pp. 1- 22.
5. A short proof for Rankin--Cohen
brackets and generating operators, (with T. Kobayashi), in Lie Theory and Its Applications in Physics, Springer Proceedings in Mathematics
& Statistics, (2024).
6. Inversion of Rankin-Cohen operators
via Holographic Transform, (with T. Kobayashi) Ann. Inst. Fourier, Tome 70, no 5 (2020), p. 2131-2190.
7. A generating function for
Rankin-Cohen brackets. Letters in Math.
Physics, 108 (12),
(2018), pp. 2627-2633.
8. Conformal symmetry breaking
operators for anti-de Sitter spaces, (with T. Kobayashi, T. Kubo), Geometric
Methods in Physics. XXXV Workshop. Trends in Mathematics, pp. 69-85, Springer,
2018.
9. Conformally equivariant differential
operators for differential forms, (with T. Kobayashi, T. Kubo), Lecture Notes in Mathematics 2170, Springer-Nature (2016), ix-200
pages.
10. Classification of differential
symmetry breaking operators for differential forms (with T. Kobayashi, T. Kubo)
C. R. Acad. Sci. Paris, 354,
(2016), pp. 671-676.
11. Differential symmetry breaking
operators. I. General theory and F-method, (with T. Kobayashi), Selecta Math. 22, (2016), pp. 801-845.
12. Differential symmetry breaking
operators. II. Rankin-Cohen operators for symmetric pairs, (with T. Kobayashi),
Selecta Math. (2016), pp. 847-911.
13. Vector-valued covariant differential
operators for the Möbius transformation (with T. Kobayashi, T. Kubo) in Lie
Theory and Its Applications in Physics, V. Dobrev, Edt. Springer Proceedings in Mathematics
& Statistics, 111, 2015, pp. 67-86.
14. Rankin-Cohen operators for symmetric
pairs, (with T. Kobayashi), Preprint IHES/M/13/3.
15. Rankin-Cohen brackets and representations of conformal groups. Annales Math. Blaise Pascal 19 (2012), pp. 455-484.
16. Geometric analysis on small unitary
representations of GL(N,R), (with T. Kobayashi, B. Ørsted),
J. Funct. Anal.,
260, (2011), pp. 1682–1720.
17. Generalized Bernstein-Reznikov
integrals, (with J.-L. Clerc, T. Kobayashi, B. Ørsted),
Math. Annalen, 349, (2011), pp. 395-431.
18. Approaching Quantization in the
light of invariant differential operators, Proceeding of the International
Conference, Casimir
Force, Casimir Operators and the Riemann Hypothesis, de Gruyter 2010, pp.
241–248.
19. Composition formulas in the Weyl
calculus (with T. Kobayashi, B. Ørsted, A.
Unterberger), J. Funct.
Anal. 257, (2009), pp. 948-991.
20. Covariant quantization: symbolic calculus versus deformation quantization. Japan. J. Math. 3. (2008), pp. 247-290.
21. Rankin-Cohen brackets and
associativity. Lett. Math. Physics, 85, (2008), pp. 195–202.
22. H*-algebras and quantization of
para-Hermitian spaces, (with G. van Dijk) Proc.
Amer. Math. Soc. 136, (2008),
pp. 2253-2260.
23. Projective pseudo-differential
analysis and harmonic analysis, (with A. Unterberger), J.Funct. Anal. 242, (2007), pp.
442--485.
24. Ring structures for holomorphic
discrete series and Rankin-Cohen brackets, (with G. van Dijk), J. Lie Theory, 17, (2007), pp. 283-305.
25. Berezin kernels and analysis on Makarevich spaces (with J.Faraut),
Indag. Mathem.,
(N.S.) 16, (2005), no. 3-4, pp.
461-–486.
26. Berezin kernels and maximal
degenerate representations associated with Riemannian symmetric spaces of
Hermitian type. J. Math. Sci., 126, (2005) pp. 1046-1052.
27. Isomorphisme
de Duflo et la cohomologie tangentielle (with Ch.Torossian), J. Geom. Phys. 51,
(2004), pp. 487-506.
28. Invariant Hilbert subspaces of the
oscillator representation (with G. van Dijk, S. Aparicio) Indag.
Math. (N.S.) 14, (2003), pp. 309–318.
29. Star-representations and invariant
quantization of the upper half-plane, (with P.Bieliavsky)
Non commutative harmonic analysis, Progress in Mathematics, Vol.220, (2003), Birkhauser.
30. Symmetric spaces and
star-representations, (with P.Bieliavsky) J. Geom.
Phys., 41 (2002),
pp.224-234.
31. Matrix-valued Berezin Kernels (with
G. van Dijk), Geometry and analysis on Lie groups Banach Center
Publications, vol. 55, Warszawa (2002), pp. 269–288.
32. Berezin kernels and maximal
degenerate representations associated with Riemannian symmetric spaces of
Hermitian type. J. Math. Sci., New York 126, (2002), pp.
1046-1052.
33. Berezin Kernels on Tube domains,
(with G. van Dijk) J. Funct. Anal. 181,
(2001), pp. 189-209.
34. Analyse
conforme sur les algèbres de Jordan. J. Aust. Math. Soc. 73 (2002),
pp. 279–299.
35. Représentation
de Weil associée à une représentation d’algèbre de Jordan, C.R. Acad. Sci. Paris, 328, (1999), pp. 463-468.
36. Espace de
Bergman d’un semi-groupe complexe, C. R. Acad. Sci.
Paris, 322, (1996), pp.635-640.
Reports :
1.
Generating
operators and Branching Problems, Proceedings of the 2023, Symposium on Representation Theory, Okinawa, Japan.
2.
On
symmetry breaking operators, Proceedings of the 2018 Symposium on Representation Theory, Edt.
J. Inoue, Tottori, Japan.
3.
"Liberté aux professeurs associés!"
Interview with Alexandre Aleksandrovich
Kirillov. Eur. Math. Soc. Newsl. No. 106 (2017), 21–29 (with A. Fialowski,
Yu. Neretin and V. Salnikov).
4.
T.
Kobayashi, T. Kubo, and M. Pevzner, Covariant differential operators and the
Rankin-Cohen bracket, Proceedings of Symposium
on Representation Theory 2014, Awajishima, (J.
Matsuzawa and N. Shimeno, eds.), 2014, pp. 75-86.
5. Hilbert algebras and symmetric
spaces. Proceedings of 2007 Symposium on Representation theory, Edt. N. Shimeno, Okayama
University, 2007, Okayama.
6. Kontsevich Quantization and Duflo Isomorphism,
dans Quantization and Analysis on symmetric spaces, Proceedings of
Schrödinger Institute, Editor H. Upmeier, 2005.
7. Berezin Transform and Quantization,
Annual Report of Leiden University, 2001.
Livres:
I. Conformally equivariant differential operators for differential
forms, (avec T. Kobayashi, T.Kubo), Lecture Notes in Mathematics
2170, Springer (2016), 200 pages.
II. Représentations
et quantification, EUE, 2010, ISBN: 978-6131541636.
Thèses:
A. Analyse conforme sur les algèbres de Jordan. Thèse
de doctorat, Université Paris
VI, 1998.
B. Représentations des groupes de Lie
conformes et quantification des espaces symétriques, Habilitation
à diriger des recherches (HDR), Université de
Reims, 2005.